Monday, May 21, 2018

ตัวต้านทาน(resistor) คือ?

ตัวต้านทาน(resistor) คือ อุปกรณ์ทางไฟฟ้าชนิดหนึ่งที่ทำหน้าที่จำกัดหรือควบคุมกระแสไฟฟ้า
ทำด้วยลวดต้านทานหรือถ่านคาร์บอน ถ้าอุปกรณ์นั้นมีความต้านทานมาก กระแสไฟฟ้าที่ไหลผ่านจะน้อยลง เป็นอุปกรณ์ไฟฟ้าชนิดพาสซีฟสองขั้ว ที่สร้างความต่างศักย์ไฟฟ้าคร่อมขั้วทั้งสอง (V) โดยมีสัดส่วนมากน้อยตามปริมาณกระแสไฟฟ้าที่ไหลผ่าน (I) อัตราส่วนระหว่างความต่างศักย์ และปริมาณกระแสไฟฟ้า ก็คือ ค่าความต้านทานทางไฟฟ้า หรือค่าความต้านทานของตัวนำมีหน่วยเป็นโอห์ม ( สัญลักษณ์ : Ω ) เขียนเป็นสมการตามกฏของโอห์ม ดังนี้
{\displaystyle R={V \over I}}
สัญลักษณ์ตัวต้านทาน(resistor)



 
 รูปแสดงแบบที่1

ผลการค้นหารูปภาพสำหรับ resistor ตัวต้านทาน symbol 
รูปแสดงแบบที่2

การอ่านค่าตัวต้านทาน(resistor)


 รูปแสดงที่3
 ตัวต้านทาน(resistor)แบบAxial Resistor สามารถแบ่งออกได้หลายแบบขึ้นอยู่กับแถบสีที่อยู่บนตัวมัน เช่น 4-Band,5-Band,6-Band แต่มีการอ่านค่าลักษณ์เดียวกัน การอ่านนั้นจะเริ่มอ่านจากแถบสีด้านซ้ายมือไปทางด้านขวามือ(แถบสีที่อยู่ด้านซ้ายจะเรียงชิดกันส่วนทางด้านขวาแถบสีจะห่างต่างออกไป)
  
   แบบ 4-ฺBand
 
วิธีการอ่านดังนี้
    แถบที่1 จะเป็นตั้งตั้ง หลักที่1
    แถบที่2 จะเป็นตั้งตั้ง หลักที่2
    แถบที่3 จะเป็นตัวคูณ
    แถบที่4 จะเป็นเปอร์เซ็นต์ความผิดพลาด
ตัวอย่างที่ 
แถบสี แดง ดำ น้ำตาล  ทอง
    แดง    ดำ     น้ำตาล      ทอง
       2       0     x10          + 5 %
อ่านได้ 200 โอห์ม ค่าความผิดพลาด  + 5 %
   แบบ 5-ฺBand
 
วิธีการอ่านดังนี้
    แถบที่1 จะเป็นตั้งตั้ง หลักที่1
    แถบที่2 จะเป็นตั้งตั้ง หลักที่2
    แถบที่3 จะเป็นตั้งตั้ง หลักที่3
    แถบที่4 จะเป็นตัวคูณ
    แถบที่5 จะเป็นเปอร์เซ็นต์ความผิดพลาด
ตัวอย่างที่ 
 แถบสี แดง ดำ น้ำตาล  แดง   แดง
    แดง    ดำ     น้ำตาล      แดง        แดง
       2       0         1          x100        + 2 %
อ่านได้ 20100 โอห์ม หรือ 20.1 กิโลโอห์ม ค่าความผิดพลาด  + 2 %

การอ่านค่าตัวต้านทาน(resistor)แบบ SMD Resistor มีวิธีการอ่านดังนี้
ค่าที่แสดงบนSMD Resistorมีทั้งแบบตัวอักษรและแบบตัวเลข แบบที่เป็นตัวเลขทั้งหมด จะพบมากที่สุด  มี 2 แบบ คือ แบบตัวเลข 3 หลัก และแบบตัวเลข 4 หลัก
หลักการอ่านค่าเบื้องต้นง่าย ๆ สำหรับแบบตัวเลข 3 หลักและแบบตัวเลข 4 หลักคือ
1.ตัวเลขหลักสุดท้าย จะบอกจำนวนเลขศูนย์ที่ต่อท้าย หรือ ตัวคูณ 10 ยกกำลัง แบบเดียวกับการอ่านรหัสสี แต่อันนี้บอกเป็นตัวเลขมาเลยไม่ต้องแปลให้เสียเวลา
2.ตัวเลขข้างหน้าที่เหลือ 2 หรือ 3 หลักก็เอามาเรียงต่อกันเหมือนแถบสี
มีข้อยกเว้นอยู่ คือ กรณีที่ Resistor ตัวนั้นมีค่าน้อยกว่า 10 โอห์มจะไม่มีตัวคูณ แต่จะใช้ตัวอักษร R เข้ามาปนด้วยและจะเปลี่ยนวิธีการอ่านใหม่โดยอ่านเรียงตัวเลขทั้งหมดตรงตัว R ให้แทนด้วยจุดหรืออ่านว่าจุด แทน
นั่นคือ ตัวเลขก่อนตัวอักษร R เป็นเลขหน้าจุดทศนิยม  ตัวเลขหลังตัวอักษร R เป็นตัวเลขหลังจุดทศนิยม

ตัวอย่างแบบ 3 หลัก เช่น
680       0 บอกว่ามีศูนย์ต่อท้าย ศูนย์ตัว คือ ไม่มีศูนย์ต่อท้าย 2 ตัวหน้าคือ 68
            ดังนั้นคือ 68 โอห์ม ไม่ใช่ 680 โอห์ม
241       1 บอกว่ามีศูนย์ 1 ตัวต่อท้าย  2 ตัวหน้าคือ 24  ดังนั้นค่าคือ 240 โอห์ม
103       3 คือ มีศูนย์ต่อท้าย 3 ตัว 2 ตัวหน้าคือ 10  ดังนั้นค่าคือ 10000 โอห์ม(10K)
3R3       R คือ จุด ก็อ่านเรียงไปเลย  3 จุด 3  ค่าคือ 3.3 โอห์ม
R47       อ่านเรียงเป็น จุด 47 คือ 0.47 โอห์ม

ตัวอย่างแบบ 4 หลัก เช่น
4700       0 บอกว่ามีศูนย์ต่อท้าย ศูนย์ตัว คือ ไม่มีศูนย์ต่อท้าย  3 ตัวหน้าคือ 470    
   ดังนั้นคือ 470 โอห์ม ไม่ใช่ 4700 โอห์ม
9531      1 บอกว่ามีศูนย์ต่อท้าย 1 ตัว 3 ตัวหน้าคือ 953    ดังนั้นคือ 9530 โอห์ม
15R0      อ่านเรียงเป็น 15 จุด 0    คือ 15.0 โอห์ม
0R51      อ่านเรียงเป็น 0 จุด 51  คือ 0.51 โอห์ม
R133      อ่านเรียงเป็น จุด 133 คือ 0.133 โอห์ม

ทฤษฎีการทำงาน

ตัวต้านทานต่ออนุกรม

     ในการต่อแบบอนุกรม กระแสที่ไหลผ่านตัวต้านทานทุกตัวมีจำนวนเท่ากัน แต่แรงดันไฟฟ้าในแต่ละตัวต้านทานจะเป็นสัดส่วนกับความต้านทานของมัน ความต่างศักย์(แรงดัน)ที่เห็นตกคร่อมในเครือข่ายทั้งหมดคือผลรวมของแรงดันไฟฟ้าเหล่านั้น ความต้านทานรวมสามารถหาได้จากผลรวมของความต้านทานของแต่ละตัวเหล่านั้น
แผนภาพแสดงตัวต้านทานหลายตัวที่เชื่อมต่อกันเป็นแถว และมีกระแสจำนวนเดียวกันไหลผ่านตัวต้านทานแต่ละตัว
{\displaystyle R_{\mathrm {eq} }=R_{1}+R_{2}+\cdots +R_{n}.}

     ในกรณีพิเศษ, ตัวต้านทานของจำนวน N ตัวมีความต้านทานเท่ากันเท่ากับ R ต่อกันแบบอนุกรม ความต้านทานรวมจะเท่ากับ NxR ดังนั้นหากตัวต้านทานหนึ่งตัวขนาด 100K โอห์ม ต่ออนุกรมกับตัวต้านทานขนาด 22K โอห์มหนึ่งตัว ความต้านทานรวมจะเท่ากับ 122K โอห์ม ทั้งสองตัวนี้จะทำงานในวงจรราวกับว่าพวกมันเป็นตัวต้านทานตัวเดียวที่มีค่าความต้านทาน 122K โอห์ม; สาม ตัวต้านทานขนาด 22K โอห์ม(จำนวน = 3, R = 22K ) จะสร้างความต้านทานเท่ากับ 3x22K = 66K โอห์ม

ตัวต้านทานต่อขนาน

ความต่างศักย์(แรงดัน)ของแต่ละตัวจะมีค่าเท่ากัน แต่กระแสทั้งหมดจะเท่ากับกระแสที่ไหลผ่านตัวต้านทานแต่ละตัวนำมารวมกัน ค่า conductances ของตัวต้านทานจะถูกนำมารวมกันเพื่อพิจารณาค่า conductances ของเครือข่าย ดังนั้นค่าความต้านทานเทียบเท่า (Req) ของเครือข่ายที่สามารถคำนวณได้แผนภาพแสดงตัวต้านทานที่ต่อขนานกัน

{\displaystyle {\frac {1}{R_{\mathrm {eq} }}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+\cdots +{\frac {1}{R_{n}}}.}
     ดังนั้น ตัวอย่างเช่น ตัวต้านทาน 10 โอห์มต่อขนานกับตัวต้านทาน 5 โอห์มและ15 โอห์ม ตัวต้านทานจะผลิตส่วนผกผันของ 1/10+1/5+1/15 หรือ 1/(.1+.2+.067) = 2,725 โอห์ม ยิ่งมีจำนวนของตัวต้านทานต่อขนานกันมากเท่าไร ความต้านทานโดยรวมยิ่งน้อยลงเท่านั้น และความต้านทานรวมจะไม่สูงไปกว่าตัวต้านทานที่มีค่าต่ำสุดในกลุ่ม(ในกรณีข้างต้นตัวต้านทานน้อยที่สุดคือ 5 โอห์ม ดังนั้นความต้านทานรวมของตัวต้านทานที่ต่อกันแบบคู่ขนานจะไม่มีทางสูงกว่า 5 โอห์ม)
ความต้านทานขนานเทียบเท่าสามารถแสดงในสมการโดยสองเส้นแนวตั้ง "||" (เหมือนในเรขาคณิต)ให้เป็นสัญลักษณ์ง่ายๆ บางครั้ง สอง slashes "//" ถูกนำมาใช้แทน "||" ในกรณีที่ แป้นพิมพ์หรือฟ้อนท์ขาดสัญลักษณ์เส้นแนวตั้ง สำหรับกรณี ที่สองตัวต้านทานต่อแบบขนานนี้สามารถคำนวณโดยใช้ :

 แบบต่างๆของตัวต้านทาน(resistor)

ฟิล์มคาร์บอน

     ฟิล์มคาร์บอนจะถูกวางลงบนพื้นผิวฉนวนและถูกตัดเป็นวงรีเพื่อสร้างเป็นเส้นทางความต้านทานที่ยาวและแคบ การเปลี่ยนแปลงของรูปทรง ควบคู่ไปกับความต้านทานของคาร์บอนอสัณฐาน (ระหว่าง 500-800 μΩ เมตร) สามารถให้ความหลากหลายของความต้านทาน เมื่อเทียบกับองค์ประกอบคาร์บอน พวกมันให้คุณลักษณะของเสียงรบกวนต่ำ เนื่องจากความแม่นยำของการกระจายแกรไฟท์บริสุทธิ์โดยไม่ต้องมีผลผูกพัน ตัวต้านทานฟิล์มคาร์บอนมีช่วงอัตรากำลังที่ 0.125-5 วัตต์ที่ 70 °C. ความต้านทานช่วงใช้ได้มีตั้งแต่วันที่ 1 โอห์ม ถึง 10 megohm ตัวต้านทานฟิล์มคาร์บอนมีช่วงอุณหภูมิการดำเนินงาน ระหว่าง -55 ° C ถึง 155 ° C. และมีช่วงแรงดันไฟฟ้าสูงสุดในการทำงานที่ 200-600 โวลต์ ตัวต้านทานฟิล์มคาร์บอนพิเศษถูกใช้ใน งานที่ต้องการความมั่นคงของพัลส์สูง

ตัวต้านทานคาร์บอนพิมพ์

      ตัวต้านทานองค์ประกอบคาร์บอนสามารถถูกพิมพ์โดยตรงลงบนพื้นผิวของแผงวงจรพิมพ์ (PCB) ที่เป็นส่วนหนึ่งของกระบวนการผลิต PCB ในขณะที่เทคนิคนี้เป็นเรื่องปกติมากขึ้นในโมดูล PCB ไฮบริด มันก็ยังสามารถถูกนำมาใช้ใน PCB แบบไฟเบอร์กลาสมาตรฐาน ความคลาดเคลื่อน โดยทั่วไปจะมีขนาดใหญ่มากและสามารถอยู่ในราว 30% การใช้งานทั่วไปจะเป็นตัวต้านทานที่ทำงานเป็นตัว pull-up ที่ไม่วิกฤต

ฟิล์มหนาและบาง

ตัวต้านทานฟิล์มหนาได้รับความนิยมในช่วงปี 1970s และตัวต้านทานแบบ SMD (surface mount device) ส่วนใหญ่วันนี้เป็นตัวต้านทานชนิดนี้ ชิ้นส่วนต้านทานของฟิล์มหนาจะหนาเป็น 1000 เท่ากว่าฟิล์มบาง แต่ความแตกต่างที่สำคัญจะเป็นวิธีการที่ฟิล์มจะถูกนำไปใช้กับกระบอก(ตัวต้านทานแบบแกน) หรือพื้นผิว(ตัวต้านทานแบบ SMD)
       ตัวต้านทานฟิล์มบางจะถูกทำโดยการสปัตเตอร์ (วิธีการของการสะสมสูญญากาศ)วัสดุต้านทานบนพื้นผิวฉนวน จากนั้นฟิล์มจะถูกฝังในลักษณะที่คล้ายกันกับวิธีการเก่า (แบบลด) เพื่อทำแผงวงจรพิมพ์ นั่นคือ พื้นผิวจะถูกเคลือบด้วยวัสดุไวแสง จากนั้นจะถูกคลุมด้วยฟิลม์ตามแบบ, ฉาบด้วยรังสีอัลตราไวโอเลต และจากนั้นจัดการฉายแสงลงบนบริเวณที่เคลือบด้วนสารไวแสง ฟิล์มบางๆที่อยู่ด้านใต้จะถูกกัดออกไป
       ตัวต้านทานฟิล์มหนาเป็นผลิตภัณฑ์ที่ผลิตโดยใช้การสกรีนและการพิมพ์ลายฉลุ เพราะช่วงเวลาระหว่างการทำสปัตเตอร์จะสามารถควบคุมได้ ความหนาของฟิล์มบางจึงสามารถ ควบคุมได้อย่างแม่นยำ ชนิดของวัสดุก็ยังแตกต่างกัน มักจะประกอบด้วยตัวนำเซรามิก (cermet )หนึ่งตัวนำหรือมากกว่า เช่น แทนทาลัมไนไตรด์ (TaN), รูทีเนียมออกไซด์(RuO2), ตะกั่วออกไซด์ (PbO), bismuth ruthenate ( Bi2RU2O7), นิกเกิลโครเมียม (NiCr) หรือ bismuth iridate (Bi2Ir2O7)
       ความต้านทานของทั้งฟิล์มบางและฟิล์มหนาหลังการผลิตจะไม่ถูกต้องอย่างมาก พวกมันมักจะ ถูกตัดเล็มให้เป็นค่าที่ถูกต้องโดยการขัดหรือการตัดด้วยเลเซอร์ ตัวต้านทานฟิล์มบางมักจะถูกระบุความคลาดเคลื่อนอยู่ที่ 0.1, 0.2, 0.5, หรือ 1% และมีค่าสัมประสิทธิ์อุณหภูมิอยู่ที่ 5-25 ppm/K. พวกมันยังมีระดับเสียงรบกวนที่ต่ำกว่ามาก ในระดับ 10-100 เท่าน้อยกว่าตัวต้านทาน ฟิล์มหนา(เพราะมีค่า conductance ต่ำกว่ามาก)
       ตัวต้านทานฟิล์มหนาทั้งหลายอาจจะใช้เซรามิกส์เป็นสื่อกระแสไฟฟ้าเหมือนกัน แต่พวกมันจะถูก ผสมกับแก้วซินเตอร์(ผง) และของเหลวตัวขนส่งเพื่อให้ส่วนผสมสามารถที่จะถูกพิมพ์แบบสกรีนได้ จากนั้น ส่วนผสมของแก้วกับวัสดุตัวนำเซรามิก (cermet)นี้จะถูกหลอม(อบ)ในเตาอบที่ประมาณ 850 °C.
ตัวต้านทานฟิล์มหนาที่ผลิตครั้งแรกมีความคลาดเคลื่อนที่ 5 % แต่ความคลาดเคลื่อนมาตรฐาน ได้ปรับปรุงให้ดีขึ้นถึง 2% หรือ 1% ในช่วงไม่กี่ทศวรรษที่ผ่านมา ค่าสัมประสิทธิ์อุณหภูมิของ ตัวต้านทานฟิล์มหนาจะสูง โดยทั่วไปอยู่ที่ ±200 หรือ ±250 ppm/K; อุณหภูมิเปลี่ยนแปลงที่ 40 เคลวิน (70 °F) สามารถเปลี่ยนความต้านทานไป 1%
       ตัวต้านทานฟิล์มบางมักจะมีราคาแพงกว่าตัวต้านทานฟิล์มหนามาก ตัวอย่างเช่นตัวต้านทานฟิล์มบาง SMD ที่มีความคลาดเคลื่อน 0.5% และสัมประสิทธิ์อุณหภูมิที่ 25 ppm/K เมื่อซื้อในปริมาณเต็มม้วนจะมีราคาประมาณสองเท่าของตัวต้านทานฟิล์มหนาของ 1%, 250 ppm/K

ฟิล์มโลหะ

       ตัวต้านทานที่มีขาออกจากปลายลำตัวเป็นชนิดที่พบมากของวันนี้ จะเรียกว่าเป็นตัวต้านทานแบบ ฟิล์มโลหะ ตัวต้านทานแบบไม่มีขามีขั้วโลหะ (อังกฤษ: Metal electrode leadless face) หรือ MELF มักจะใช้เทคโนโลยีเดียวกัน แต่จะมีรูปทรงกระบอกออกแบบมาสำหรับติดตั้งบนพื้นผิว โปรดทราบว่า ประเภทอื่นๆของตัวต้านทาน (เช่น องค์ประกอบคาร์บอน) ยังมีในแพคเกจ MELF
ตัวต้านทานฟิล์มโลหะมักจะถูกเคลือบด้วยนิกเกิลโครเมียม (NiCr) แต่อาจจะถูกเคลือบด้วยวัสดุ cermet ใดๆที่ระบุไว้ข้างต้นสำหรับตัวต้านทานฟิล์มบาง. แตกต่างจากตัวต้านทานฟิล์มบาง วัสดุอาจนำมาใช้โดยใช้เทคนิคที่แตกต่างจากการสปัตเตอร์ (แม้ว่าสิ่งนี้เป็นหนึ่งในเทคนิค) นอกจากนี้ยังแตกต่างจากตัวต้านทานชนิดฟิล์มบาง, ค่าความต้านทานจะถูกกำหนดโดยการตัดเป็นวงรึผ่านการเคลือบผิว มากกว่าจะทำโดยการแกะสลัก (นี่คือวิธีที่คล้ายกับตัวต้านทานคาร์บอนที่ถูกทำ) ผลที่ได้คือความคลาเคลื่อนที่เหมาะสม (0.5%, 1% หรือ 2%) และค่าสัมประสิทธิ์อุณหภูมิที่โดยทั่วไประหว่าง 50 ถึง 100 ppm/K ตัวต้านทานฟิล์มโลหะมีลักษณะของเสียงรบกวนที่ดีและการไม่เป็นเชิงเส้นที่ต่ำเนื่องจากค่าสัมประสิทธิ์แรงดันไฟฟ้าที่ต่ำ นอกจากนี้ยังมีประโยชน์เกี่ยวกับความอดทนที่มีประสิทธิภาพของชิ้นส่วน, ค่าสัมประสิทธิ์อุณหภูมิ และความมั่นคง

ฟิล์มโลหะออกไซด์

      ตัวต้านทานฟิล์มลหะออกไซด์ถูกทำขึ้นจากโลหะออกไซด์เช่นดีบุกออกไซด์ ซึ่งส่งผลให้มี อุณหภูมิในการทำงานที่สูงกว่าและมีความมั่นคง/น่าเชื่อถือมากกว่าฟิล์มโลหะ พวกมันจะถูกใช้ ในงานที่มีความต้องการความอดทนสูง

ลวดพัน

       ตัวต้านทานแบบลวดพันโดยทั่วไปถูกทำขึ้นโดยการพันลวดโลหะที่มักจะเป็น Nichrome รอบแกนเซรามิก, พลาสติกหรือไฟเบอร์กลาส ปลายของลวดทั้งสองด้านจะถูกบัดกรีหรือเชื่อมเข้ากับจุกหรือแหวนสองอัน ที่ผูกติดอยู่กับปลายของแกน ชิ้นงานถูกปกป้องด้วยชั้นของสี, พลาสติก หล่อหรือสารเคลือบที่ถูกอบที่อุณหภูมิสูง ตัวต้านทานเหล่านี้ถูกออกแบบมาเพื่อทนต่ออุณหภูมิที่สูงผิดปกติถึง +450 °C เส้นลวดในตัวต้านทานลวดพันกำลังงานต่ำปกติมีเส้นผ่าศูนย์กลางระหว่าง 0.6 และ 0.8 มม.และเคลือบด้วยดีบุกเพื่อความสะดวกในการบัดกรี สำหรับ ตัวต้านทานลวดพันกำลังงานที่สูงกว่า ไม่ว่าจะใช้แบบกล่องใส่เซรามิกหรือกล่องใส่อะลูมิเนียมด้านนอกบนยอดของชั้นฉนวน - ถ้ากล่องด้านนอกเป็นเซรามิก, ตัวต้านทานดังกล่าวบางครั้งจะถูกอธิบายว่าเป็นตัวต้านทาน"ซีเมนต์" แม้ว่าพวกมันจะไม่ได้มีส่วนของปูนซิเมนต์แบบดั้งเดิมจริงๆ ถ้าเป็นกล่องอะลูมิเนียม มันถูกออกแบบมาให้ติดกับ heat sink เพื่อกระจายความร้อน อัตรากำลังการทำงานจะขึ้นอยู่กับการใช้งานที่มีการระบายความร้อนที่เหมาะสม เช่นตัวต้านทานอัตรากำลัง 50 W จะ overheat ที่เศษส่วนของการกระจายความร้อนเท่านั้นหากไม่ได้ใช้ heat sink ตัวต้านทานลวดพันขนาดใหญ่อาจจะมีอัตราที่ 1,000 วัตต์ หรือมากกว่า เพราะตัวต้านทานลวดพันเป็นขดลวด พวกมันจึงมีค่าความเหนี่ยวนำที่ไม่พึงประสงค์มากกว่าตัวต้านทานชนิดอื่นๆ แม้ว่าม้วนลวดในหลายๆส่วนมีทิศทางกลับสลับกันจะ สามารถลดการเหนี่ยวนำลงให้น้อยที่สุดได้ก็ตาม เทคนิคอื่นๆจะใช้ bifilar ในการพันหรือใช้ตัวดัดแบนบาง (เพื่อลดพื้นที่หน้าตัดของขดลวด) สำหรับวงจรที่ต้องการใช้มากที่สุด ตัวต้านทานจะพันด้วย Ayrton-Perry การใช้งานของตัวต้านทานลวดพันมีความคล้ายคลึงกับงานของตัวต้านทานองค์ประกอบ ยกเว้นงานความถี่สูง การตอบสนองความถี่สูงของตัวต้านทานลวดพันจะเลวร้ายเป็นอย่างมากเมื่อเทียบกับตัวต้านทานองค์ประกอบ

ตัวต้านทานแบบฟอยล์

       ชิ้นส่วนความต้านทานหลักของตัวต้านทานแบบฟอยล์เป็นฟอยล์โลหะผสมพิเศษมีความหนาหลายไมโครเมตร เนื่องจากถูกแนะนำเข้ามาในปี 1960 ตัวต้านทานแบบฟอยล์มีความแม่นยำและความมั่นคงที่ดีที่สุดของตัวต้านทานใดๆที่มีอยู่ขณะนั้น หนึ่งในพารามิเตอร์สำคัญที่มีอิทธิพลต่อความมั่นคงจะเป็นค่าสัมประสิทธิ์อุณหภูมิของความต้านทาน (อังกฤษ: temperature coefficient of resistance) หรือ TCR TCR ของมันต่ำมากและได้รับการปรับปรุงให้ดีขึ้นตลอดในช่วงหลายปี ช่วงหนึ่งของตัวต้านทานแบบฟอยล์ที่มีความแม่นยำเป็นพิเศษจะมี TCR ที่ 0.14 ppm/°C, ความคลาดเคลื่อน ± 0.005%, ความมั่นคงในระยะยาว (1 ปี) 25 ppm, (3 ปี) 50 ppm (ปรับปรุงเพิ่มเติม 5 เท่าโดยการปิดผนึกสุญญากาศ) ความมั่นคงภายใต้โหลด (2000 ชั่วโมง)ที่ 0.03%, อุณหภูมิ EMF 0.1 μV/°C, เสียงรบกวน -42 dB, ค่าสัมประสิทธิ์แรงดัน 0.1 ppm/V, ความเหนี่ยวนำ 0.08 μH, ความเก็บจุ 0.5 pF

ตัว shunt ของแอมมิเตอร์

 ตัวชั้นท์ของแอมมิเตอร์เป็นตัวต้านทานที่ไวต่อกระแสชนิดพิเศษ มันมีสี่ขาและมีค่าเป็น milliohms หรือแม้กระทั่งไมโครโอห์ม เครื่องมือวัดกระแสโดยตัวมันเอง มักจะสามารถรับกระแส ใด้จำกัด เพื่อวัดกระแสสูง กระแสจะไหลผ่านชั้นท์เพื่อวัดแรงดันตกคร่อมแล้วตีค่าออกมาเป็นกระแส ชั้นท์ทั่วไปประกอบด้วยสองช่วงบล็อกโลหะแข็ง บางครั้งใช้ทองเหลือง ติดตั้งอยู่บนฐานฉนวน. ระหว่างช่วงบล็อกที่ถูกบัดกรีหรือประสานเข้าด้วยกันจะมีหนึ่งหรือมากกว่าหนึ่งแถบของโลหะผสมแมงกานินที่มี TCR ต่ำ น็อตเกลียวขนาดใหญ่ถูกร้อยผ่านบล็อกที่ทำให้เกิดการเชื่อมต่อกระแส ในขณะที่สกรูที่ขนาดเล็กกว่ามากให้การเชื่อมต่อแรงดันไฟฟ้า ชั้นท์ถูกตั้งอัตราโดยกระแสเต็มสเกล และมักจะมีแรงดันไฟฟ้าตกคร่อมที่ 50 mV ที่อัตรากระแส มิเตอร์ดังกล่าวจะถูก ปรับตัวให้เข้าอัตรากระแสเต็มของชั้นท์โดยการทำเครื่องหมายโดยประมาณบนหน้าปัด; ไม่จำเป็นต้องมีการเปลี่ยนแปลงในส่วนอื่นๆของมิเตอร์

No comments:

Post a Comment